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Abstract. This paper presents a technique for the certification of Cu-
bicle, a model checker for proving safety properties of parameterized
systems. To increase the confidence in its results, Cubicle now produces
a proof object (or certificate) that, if proven valid, guarantees that the
answer for this specific input is correct. The main challenges addressed in
this paper are (1) the production of such certificates without degrading
the performances of the model checker and (2) the construction of these
proof objects so that they can be independently and efficiently verified
by an SMT solver. Since the burden of correctness insurance now relies
on this external solver, a stronger guarantee is obtained by the use of
multiple backend automatic provers for redundancy. Experiments show
that our approach does not impact Cubicle’s performances and that we
were able to verify certificates for challenging parameterized problems.
As a byproduct, these certificates allowed us to find subtle and critical
implementation bugs in Cubicle.

1 Introduction

Multi-core architectures or distributed systems usually rely on protocols (such as
mutual exclusion, cache coherence or fault-tolerance) which are designed for an
arbitrary number of components. These protocols are critical and known as being
notoriously difficult to design essentially because of their highly asynchronous
and fine-grained concurrent nature. As a result, their validation by simulation
is risky because some race conditions appear scarcely and are unlikely to be
reproduced. Consequently, the formal verification of these protocols is a necessity.

One of the most successful formal technique for verifying concurrent systems
is model checking which automatically determines if a model, usually described
by a transition system, meets a specification expressed as temporal properties.
When the model is defined independently of the number of components, its
verification is known as the parameterized model checking problem.

Being parameterized or not, the answer produced by a model checker is
usually simply “yes” or “no”. When the result is negative, a counterexample (in
the form of a sequence of transitions) can also be easily returned (and checked
by the user). On the contrary, model checkers rarely return a proof evidence for
a positive answer. So, should we trust a model checker when it simply returns
“yes”? From our experience, given the high complexity of the implementation of
these tools, the answer is clearly no.



To be sure of the correctness of these answers, we can either use a certified
model checker [12] or a model checker that produces in addition a proof of its
result, also called a certificate [21]. The advantage of the first approach is that
the model checker is verified correct once and for all. However, this is a very
heavy task since model checkers are profoundly optimized programs with a large
number of components. In the second approach, certificates have to be checked
after each run. Its advantage is to be far less intrusive, the only necessity is to
instrument an already existing model checker. However, this approach is only
applicable if certificates or proof objects are small and simple enough to be
checked in a reasonable time after the fact.

The aim of this work is to bring a higher level of confidence in the results
produced by Cubicle [6], an SMT-based model checker for proving safety prop-
erties of parameterized systems4. Cubicle represents states as logical formulas
(expressed in a fragment of first-order logic) and checks that unsafe states are
not reachable using a backward analysis. In that framework, it is far simpler to
produce and check a certificate than to certify the model checker itself. Indeed,
Cubicle is a very complex piece of software combining higher order functional
programming style with efficient imperative data structures and concurrency.
As far as we know, there are no framework for certifying such a program as is.
Furthermore, we demonstrate through a set of experiments that checking proof
objects can be done efficiently, even for industrial size protocols.

The content of the paper, our contributions and the originality of our ap-
proach are as follows:

– Extract an inductive invariant φ from the backward reachability loop and
generate proof obligations (POs) whose validity guarantees that φ is an in-
ductive invariant subsuming the original safety property (Section 3). These
POs are first order formulas which are sent to an automatic theorem prover
(Section 4).

– A set of algorithmic techniques to enrich and simplify the certificates in
order to handle more complex and larger problems (Section 5). A stronger
guarantee on the certification process is achieved by redundancy: each PO
is independently proven by several tools (SMT solvers, automatic theorem
provers, etc.).

We illustrate the general approach with a running example: a simple cache
coherence protocol. We show the merit of our approach in Section 5.2 through a
set of benchmarks for which the certification process is conducted entirely auto-
matically. These notably include two industrial parameterized cache coherence
protocols: FLASH and a new protocol developed at Intel and Duke.

Last but not least, the certificates allowed us to find several bugs in Cubicle
whose severity can be classified as harmless to critical with a direct impact
on its correctness. Some of these bugs have been found by testing but others
have escaped all traditional debugging techniques because they only appear very
rarely and are related to tricky implementation details.

4 Developed conjointly between Université Paris-Sud and Intel.



2 Array Based Transition Systems

Cubicle is based on the theoretical foundation of Model Checking Modulo Theo-
ries (MCMT) [14] by Ghilardi and Ranise. This is a declarative framework for
parameterized systems in which transitions and properties are expressed in a
particular fragment of first order logic. Systems expressible in this framework
are called array based transition systems because their state can be seen as a
set of unbounded arrays whose indexes range over elements of the parameterized
domain.

Definition 1. An array based transition system is a tuple S = (Q, I, τ) where Q
is a set of function symbols (also called arrays) representing the state variables,
I is a formula which characterizes the initial states of the system (in which
variables of Q can appear free) and τ is a transition relation.

In the following, the formula I is universally quantified. The relation τ is
expressed in the form of a disjunction of existentially quantified (by zero, one,
or several variables of the parameterized domain) formulas. Each component
of this disjunction is called a transition and is said to be parameterized by its
existential variables. Following usual notations, we note x′ the value of x ∈ Q

after executing the transition. Transitions relate values of primed and un-primed
variables and arrays, and are of the form:

t(Q,Q′) ≡ ∃ī. γ(̄i, Q)

︸ ︷︷ ︸

guard

∧
∧

x∈Q

∀j̄.x′(j̄) = δx(̄i, j̄, Q)

︸ ︷︷ ︸

action

where γ is a quantifier free formula called the guard of t and δx is a quantifier
free formula called the update of x.

Safety properties are expressed by characterizing unsafe states. An unsafe
formula must be in a special form called a cube, i.e. a conjunction of literals
existentially quantified by distinct variables:

Θ ≡ ∃(̄i). distinct(̄i) ∧ l1(̄i) ∧ . . . ∧ ln(̄i).

Running Example. We illustrate this framework on a simplified version of the
directory based cache coherence protocol proposed by German [24]. In Figure 1,
we give a high-level view of the evolution of a single cache as a state diagram.
The protocol consists of a global directory which maintains the consistency of
a shared memory between a parameterized number of cache clients. The status
of each cache i is indicated by a variable Cache[i] which can be in one of the
three states: (E)xclusive (read and write accesses), (S)hared (read access only)
or (I)nvalid (no access to the memory). Clients send requests to the directory
when cache misses occur: rs for a shared access (read miss), re for an exclusive
access (write miss). The directory has four variables: a boolean flag Exg indicates
whether a client has an exclusive access to the main memory, a boolean array
Shr, such that Shr[i] is true when a client i is granted (read or write) access to
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Shr[i] := true

Exg := true

Exg := true

Shr[i] := true

Shr[i] := false

Exg := false

Exg := false

Shr[i] := false

Fig. 1. High level overview of German-esque

the memory, Cmd stores the current request (ǫ stands for the absence of request),
and Ptr contains the emitter of the current request.

The array based transition system for this protocol is described by its initial
states, represented by the following logical formula (caches are invalid, no access
has been given and there is no request to be processed)

I ≡ ∀i. Cache[i] = I ∧ Shr[i] = false ∧ Exg = false ∧ Cmd = ǫ

and by its transition relation given below (an horizontal line separates guards
from actions, depicted in blue when they modify variables while the ones that
don’t change values are light gray). For instance, transition t6 should read as: if
there exists a process i such that the current pointer (Ptr) is i, the command to
be processed is a request to exclusive access (re), the flag Exg is not set and the
array Shr contains false for all processes, then erase the command, set the flag
Exg, register the process i in Shr and change the cache state of i to exclusive (E).

τ ≡ t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6

t1 : ∃i. Cache[i] = I ∧ Cmd = ǫ ∧
Ptr′ = i ∧ Cmd′ = rs ∧
Exg′ = Exg ∧
∀j. Shr[j] = Shr′[j] ∧

Cache[j] = Cache′[j]

t4 : ∃i. Shr[i] = true ∧ Cmd = rs ∧ Exg ∧
Ptr′ = Ptr ∧ Cmd′ = Cmd ∧
Exg′ = false ∧ ∀j.Shr′[j] = Shr[j] ∧
∀j. ite(i = j, Cache′[j] = S,

Cache′[j] = Cache′[j])

t2 : ∃i. Cache[i] 6= E ∧ Cmd = ǫ ∧
Ptr′ = i ∧ Cmd′ = re ∧
Exg′ = Exg ∧
∀j. Shr[j] = Shr′[j] ∧

Cache[j] = Cache′[j]

t5 : ∃i. Ptr = i ∧ Cmd = rs ∧ ¬Exg ∧
Ptr′ = Ptr ∧ Cmd′ = ǫ ∧
Exg′ = Exg ∧
∀j. ite(i = j, Shr′[j],

Shr′[j] = Shr[j]) ∧
∀j. ite(i = j, Cache′[j] = S,

Cache′[j] = Cache′[j])

t3 : ∃i. Shr[i] = true ∧ Cmd = re ∧
Ptr′ = Ptr ∧ Cmd′ = Cmd ∧
Exg′ = false ∧
∀j. ite(i = j, ¬Shr′[j],

Shr′[j] = Shr[j]) ∧
∀j. ite(i = j, Cache′[j] = I,

Cache′[j] = Cache′[j])

t6 : ∃i. Ptr = i ∧ Cmd = re ∧ ¬Exg ∧
∀j. ¬Shr[j] ∧
Ptr′ = Ptr ∧
Cmd′ = ǫ ∧ Exg′ = true ∧
∀j. ite(i = j, Shr′[j],

Shr′[j] = Shr[j]) ∧
∀j. ite(i = j, Cache′[j] = E,

Cache′[j] = Cache′[j])



This protocol ensures that when a cache client is in an exclusive state then
no other process has (read or write) access to the memory. Proving this safety
property amounts to checking that states satisfying Θ are not reachable:

Θ ≡ ∃i, j. i 6= j ∧ Cache[i] = E ∧ Cache[j] 6= I

3 Proof Evidence in Backward Reachability

In this section we explain how to get proof objects from the backward reachability
analysis used by Cubicle to prove the safety of array based systems.

For a state formula ϕ and a transition τ ∈ T , let pre(τ, ϕ) be the formula
describing the set of states from which a state satisfying ϕ can be reached in one
τ -step. The pre-image closure of ϕ, denoted by Pre

∗(ϕ), is defined as follows
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and the pre-image of a set of formulas V is defined by Pre
∗(V ) =

⋃

ϕ∈V Pre
∗(ϕ).

We also write Pre(ϕ) for Pre
1(ϕ).

Definition 2. A formula ϕ is said to be reachable iff Pre
∗(ϕ) ∧ I satisfiable.

It is unreachable otherwise.

The framework of MCMT gives sufficient conditions for which the reachabil-
ity problem (Is the unsafe formula Θ reachable in the system S ?) is decidable.
In particular, we consider that the pre-image of a cube by the transition rela-
tion τ (Preτ ) is effectively computable. The interested reader is referred to [14]
for more details. Under these conditions, safety can be checked by backward
reachability analysis.

We give a standard backward reachability algorithm for this framework, as
defined by the function BWD in Algorithm 1. Starting with an empty formula V of
visited nodes (i.e. false) and a queue Q of pending nodes initialized with a formula
Θ, BWD iteratively computes the backward reachability graph of Pre

∗
τ (Θ). The

algorithm terminates when a node fails the safety check (consistency with the
initial condition — line 6), or when all nodes in Q are subsumed by V (line 8).
These logical checks are performed by an SMT solver.

In the case where the return value of the algorithm is unsafe, it is easy to
expose an error trace — from the initial states to one of the violated property —
to the user. This trace can then be replayed afterwards to ensure the system is
indeed unsafe with respect to its specification. In the case where the return value
is safe, a certificate can be produced. Because of the nature of the program
at hand, any instrumentation for certification purposes could either diminish
efficiency (in the worst case, prevent the verification of industrial size systems)
or even badly interfere and compromise the correctness (this is however not



Algorithm 1. Backward reachability analysis

Input: an array based system S = (Q, I, τ) and a cube Θ

Variables:
V: visited cubes
Q: work queue

1 function BWD(S, Θ) : begin

2 V := ∅;
3 push(Q, Θ);
4 while not_empty(Q) do

5 ϕ := pop(Q);
6 if ϕ ∧ I satisfiable then

7 return unsafe

8 else if ϕ 6|= V then

9 V := V ∨ ϕ;
10 push(Q, Preτ (ϕ));

11 return safe

problematic from a certification standpoint if the results are to be independently
checked, but it would nonetheless render the tool ineffective). In fact, there is
no need for this certificate to contain or reflect all reasoning steps taken by the
model checker, such as pre-images, fixpoint and safety checks, because V already
contains enough information to guarantee the correctness.

Definition 3. An invariant of a system is any property that holds in all reach-
able states of the system.

The notion of safety is very closely related to the one of invariance. Checking
the safety of a system essentially amounts to ensuring that a given property is
an invariant of this system. In reality, for a system, the set of all reachable states
constitutes the strongest inductive invariant (green-shaded area of Figure 2(a)).
Dually, the set of states that cannot reach an unsafe state of the system con-
stitutes the weakest inductive invariant (w.r.t. the unsafe states) of the system
(green part of Figure 2(b)).

I

Post
∗

τ
(I)

Θ

(a) Strongest inductive invariant

I

Pre
∗

τ
(Θ)

Θ

(b) Weakest inductive invariant

Fig. 2. Inductive invariants computed by forward and backward reachability analyses



The set V computed by Cubicle (in Algorithm 1) is really the negation of this
weakest inductive invariant. It forms in itself a proof or a certificate of safety
of the system. Moreover, it is very simple to establish that a formula φ is an
inductive invariant of a system S = (Q, I, τ). All that is necessary is for it to
verify the two following conditions:

I(X) |= φ(X) (1)
initialization

φ(X) ∧ τ(X,X ′) |= φ(X ′). (2)
preservation

The base case (1) says that the invariant φ must be true in the initial states of
the system and the inductive case (2) says that the invariant must be preserved
by the transition relation. If additionally, we have

φ(X) |= P (X) (3)
property

then the property P is an invariant (not necessarily inductive) of the system.
If we take φ = ¬V and P = ¬Θ, where V is the disjunction of visited cubes

in Algorithm 1 and Θ is the unsafe formula for the system, then these three
conditions are verified. Indeed, we have by construction that V |= Pre

∗
τ (Θ), V

is closed by pre-image, i.e. V(X ′) ∧ τ(X,X ′) |= V(X) so ¬V(X) ∧ τ(X,X ′) |=
¬V(X ′). Because V contains Θ, the final condition (3) is also verified.

To certify that the result of Algorithm 1 implemented by Cubicle is correct,
it suffices to independently make sure that φ = ¬V and P = ¬Θ satisfy the three
conditions (1), (2) and (3). In the sequel, we show how to do this automatically
and efficiently.

4 A Certification Framework for Cubicle

We can prove the conditions identified at the end of the previous section with
the aid of a proof assistant or directly with an automatic theorem prover if we
desire to carry out the certification without human intervention. In the latter,
we have to trust the prover we choose. To remedy this possible disadvantage, we
have decided to use Why3 [13], a platform for deductive program verification.
It provides a logical language called Why to describe formulas in a first order
polymorphic logic with a translation mechanism to several automatic or inter-
active theorem provers. One big advantage of Why3 is that proof obligations
can be described in a common language and can be discharged by a multitude
of backend tools: SMT solvers like Alt-Ergo [5], CVC4 [3], Yices [11] or Z3 [8];
resolution based solvers like E [27], iProver [17], SPASS [30], Vampire [25]; or
when necessary, even proof assistants like Coq [9] or PVS [23].

Redundancy as a tool is used in multiple contexts. For instance, control
systems of avionics are physical entities which can fail (with known probabilities),



and higher fault tolerance is achieved by having several identical redundant
components and voting mechanisms. In formal methods, the use of different
tools to independently corroborate results is a way to achieve a higher level
of confidence. In our case, we trust our certification process when at least two
independent solvers confirm the validity of our certificates.

Our certification process follows the diagram of Figure 3. The inductive in-
variant φ constitutes the essence of the certificate produced by Cubicle. It can
then be fed directly to the checker (here Why3) or can be simplified and enriched
with a set L of lemmas (box Simpl described in Section 5). Once the solvers
used by the checker redundantly prove the conditions (1)–(3), the certificate is
declared valid.

.cub

Cubicle

Certiicate 

I |= φ

φ ∧ τ |= φ0

φ |= P

Certiicate 

I |= φ

∅ |= L

L ∧ φ ∧ τ |= φ0

φ |= P

Simpl

Checker

(Why3 + 

SMT/ATPs)

OK

Fig. 3. Certification schema

Running Example. When Cubicle is executed (without any options) on the
small protocol of Section 2, the certificate φ produced is composed of 15 quanti-
fied clauses. Now, proofs obligations are generated in Why3’s input language to
ensure that φ is indeed inductive.

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5 ∧ φ6 ∧ φ7 ∧ φ8 ∧

φ9 ∧ φ10 ∧ φ11 ∧ φ12 ∧ φ13 ∧ φ14 ∧ φ15

φ1 ≡ ¬(∃z1, z2. z1 6= z2 ∧ Exg ∧ Cmd = rs ∧ Ptr = z1 ∧ Cache[z2] 6= I ∧ Shr[z1] ∧ ¬Shr[z2])

φ2 ≡ ¬(∃z1, z2. z1 6= z2 ∧ Cache[z1] = E ∧ Cache[z2] 6= I)

φ3 ≡ ¬(∃z1, z2, z3. z2 6= z3 ∧ z1 6= z3 ∧ z1 6= z2∧

Exg ∧ Cmd = rs ∧ Ptr = z1 ∧ Cache[z2] 6= I ∧ ¬Shr[z2] ∧ Shr[z3])

φ4 ≡ ¬(∃z1, z2. z1 6= z2 ∧ Cmd = re ∧ Ptr = z2 ∧ Cache[z1] = E ∧ ¬Shr[z1] ∧ Shr[z2])

φ5 ≡ ¬(∃z1, z2. z1 6= z2 ∧ ¬Exg ∧ Cmd = ǫ ∧ Cache[z1] 6= E ∧ Cache[z2] 6= I ∧ ¬Shr[z1] ∧ ¬Shr[z2])

φ6 ≡ ¬(∃z1, z2. z1 6= z2 ∧ Cmd = re ∧ Ptr = z1 ∧ Cache[z2] 6= I ∧ Shr[z1] ∧ ¬Shr[z2])

φ7 ≡ ¬(∃z1, z2. z1 6= z2 ∧ Exg ∧ Cmd = rs ∧ Cache[z1] = E ∧ Shr[z2])

φ8 ≡ ¬(∃z1, z2, z3. z2 6= z3 ∧ z1 6= z3 ∧ z1 6= z2∧

Cmd = re ∧ Ptr = z1 ∧ Cache[z2] 6= I ∧ ¬Shr[z1] ∧ ¬Shr[z2] ∧ Shr[z3])

φ9 ≡ ¬(∃z1, z2. z1 6= z2 ∧ ¬Exg ∧ Cmd = rs ∧ Ptr = z2 ∧ Cache[z1] = E)

φ10 ≡ ¬(∃z1, z2. z1 6= z2 ∧ ¬Exg ∧ Cmd = re ∧ Ptr = z2 ∧ Cache[z1] = E ∧ ¬Shr[z1] ∧ ¬Shr[z2])

φ11 ≡ ¬(∃z1, z2. z1 6= z2 ∧ ¬Exg ∧ Cmd = re ∧ Ptr = z1 ∧ Cache[z2] 6= I ∧ ¬Shr[z1] ∧ ¬Shr[z2])

φ12 ≡ ¬(∃z1, z2. z1 6= z2 ∧ Cmd = ǫ ∧ Cache[z1] 6= E ∧ Cache[z2] 6= I ∧ Shr[z1] ∧ ¬Shr[z2])

φ13 ≡ ¬(∃z1, z2. z1 6= z2 ∧ Exg ∧ Cmd = ǫ ∧ Cache[z1] = E ∧ Cache[z2] = I ∧ Shr[z2])

φ14 ≡ ¬(∃z1, z2. z1 6= z2 ∧ ¬Exg ∧ Cmd = rs ∧ Ptr = z1 ∧ Cache[z2] 6= I ∧ ¬Shr[z2])

φ15 ≡ ¬(∃z1, z2. z1 6= z2 ∧ ¬Exg ∧ Cmd = ǫ ∧ Cache[z1] = E ∧ Cache[z2] = I)



This certificate is immediate to extract from the set V computed by Cubicle so
there is zero overhead. It is then fed directly to Why3 which in turn calls several
automated theorem provers. The certificate contains quantifiers (both universal
and existential) so we are limited to solvers that natively support them. Here
we chose to have Why3 call seven different backend provers to discharge the
proof obligations of our certificate. The results of this certificate’s verification
are given in table 1. Each prover was run with a timeout of five seconds. Times
are given in seconds and bold numbers stand for a “valid” answer, barred text in
red cells is for the answer “unkown” while T.O. denotes executions that did not
end in the allocated time (120s). The PO for preservation is split in 15 subgoals
(one for each conjunct of φ′) and we can notice that each goal is discharged by
at least three provers.

Remark. The input file describing both the system and the properties is given
in the syntax of Cubicle. When generating the certificate, a translation phase
is present to express the problem in the language of Why3 (cf. dashed line in
figure 3). In order to trust completely our certification process, this translation
should be proven correct (as semantics preserving). This is relatively easy be-
cause everything that is written in Cubicle is simply formulas in a fragment of
first order logic, so there exists a one-to-one correspondence and the translation
essentially consists in a pretty printing step. Ideally, we could even adopt the
same input language (i.e. Why3’s) to describe parameterized systems and thus
dissipate all remaining doubts.

Table 1. Why3’s output on certificate for German-esque
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initialisation 1. 0.02 0.02 0.01 0.01 0.05 0.13 0.01

property 1. 0.01 0.01 0.01 0.01 0.02 0.00 0.00

preservation 1. 0.01 0.85 0.03 0.03 0.03 1.01 0.02

2. 0.01 0.69 0.04 0.20 T.O. 0.97 0.02

3. 0.02 0.03 0.03 0.02 0.04 0.35 0.01

4. 0.01 1.18 0.03 0.03 0.36 0.67 0.02

5. 0.03 0.99 0.04 T.O. T.O. 1.08 0.01

6. 0.03 1.24 0.04 0.04 3.65 0.91 0.01

7. 0.02 0.03 0.03 0.04 0.05 0.61 0.01

8. 0.06 1.18 0.03 0.07 59.6 0.82 0.01

9. 0.02 1.17 0.03 0.01 0.06 1.33 0.01

10. 0.03 0.03 0.02 0.04 0.81 1.49 0.01

11. 0.01 0.58 0.02 0.03 0.18 0.99 0.02

12. 0.03 0.03 0.03 0.05 0.45 0.78 0.01

13. 0.03 0.93 0.02 0.01 0.08 0.95 0.01

14. 0.01 0.82 0.20 0.21 4.60 2.12 0.01

15. 0.02 0.03 0.02 0.02 0.07 0.83 0.01

Certificates for toy examples like a simple atomic mutex can be verified by all
seven provers, but here the protocol German-esque, while simply expressed, is
far from trivial. POs related to the initialization (1) and property (3) conditions
are easily and almost instantly discharged by all solvers. However POs that



concern preservation are usually a lot more difficult. These rather disappointing
performances can be attributed to the ubiquitous quantifiers of these goals, in
particular in the representation of the transition relation. Most of these solvers
use very sensitive heuristics for quantifiers so performances are often uneven and
hard to predict. However results for this (small) benchmark are still satisfactory
because all goals are proven independently several times.

This is an efficient and unintrusive way of generating correctness certificates.
The remaining challenge is now to be able to automatically verify these certifi-
cates for problems whose size and complexity are orders of magnitude larger.

5 Simpler and Richer Certificates

One nice feature of extracting certificates in this manner is that the certification
phase becomes completely independent of the model checking phase. In partic-
ular certificates are completely oblivious to any optimization — that preserves
the transitive closure property of V— used inside Cubicle. For instance, running
a parallel reachability loop or changing the search strategy does not impair the
ability to produce correct certificates. Even if one optimization was incorrect, a
certificate could still be produced the same way, but would likely5 not be verified
by external solvers.

5.1 Invariants Inference

One crucial optimization used in Cubicle is a mechanism for automatically in-
ferring quantified invariants [7]. Invariants found this way are particularly valu-
able because they allow our technique for parameterized verification to scale up
effectively on industrial size protocols. Inevitably, it also speeds up the verifi-
cation for small and medium size problems. It is a well known fact that invari-
ants, if given or when found, will prune the search space and directly impact
the time and space used by model checking algorithms. The number of visited

Pre
∗

τ
(Θ)

Θ

I

Post
∗

τ
(I)

VBRAB

Fig. 4. Inductive invariant computed
by BRAB

nodes (in V) is thus immediately dimin-
ished so this constitutes an effective way
of reducing the size of the certificate.
One particularity of the algorithm BRAB
(Backward Reachability with Approxima-
tions and Backtracking) described in [7]
and implemented in Cubicle is that in-
ferred invariants are inserted and proved
by the same backward reachability loop.
From a certification standpoint, this en-
sures that ¬V will remain inductive at the

5 If one optimization is incorrect but the resulting certificate is verified for one partic-
ular benchmark then it simply means that the model checker gave a correct answer
by incorrect means.



end of the search, meaning that the technique described in section 3 is still ap-
plicable.

In fact the inductive invariant computed by BRAB is halfway between the
strongest and the weakest invariant (see Figure 4). φ ≡ ¬VBRAB is a good
candidate for a certificate, being expressible more easily that either of those
extremes. The underlying reason is that the “internal proof” constructed by the
model checker is much shorter.

Running Example. By now running BRAB instead of traditional backward
reachability, the certificate extracted at the end of the search is only composed of
four quantified clauses (cf. below) and Table 2 shows that it is proved in totality
by all seven solvers we used.

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ φ4

φ1 ≡ ¬(∃z1, z2. z1 6= z2∧

Cache[z1] = E ∧ Cache[z2] 6= I)

φ2 ≡ ¬(∃z1. ¬Exg ∧ Cache[z1] = E)

φ3 ≡ ¬(∃z1, z2. z1 6= z2∧

Cache[z1] = E ∧ Shr[z2])

φ4 ≡ ¬(∃z1. Cache[z1] 6= I ∧

¬Shr[z1])

Table 2. Why3’s output on certificate gener-
ated by BRAB for German-esque
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initialisation 1. 0.01 0.01 0.03 0.01 0.02 0.00 0.00

property 1. 0.01 0.00 0.01 0.01 0.02 0.00 0.00

preservation 1. 0.02 0.02 0.03 0.08 0.12 0.01 0.00

2. 0.02 0.02 0.04 0.11 0.11 0.05 0.01

3. 0.02 0.02 0.03 0.04 0.07 0.01 0.01

4. 0.03 0.02 0.03 0.13 0.08 0.26 0.01

Experiments. By running Cubicle with the BRAB algorithm we are able to
prove the safety of a selected set of benchmarks and we are able to generate
certificates small enough for most of them so that they can be verified automat-
ically and independently. To obtain the results depicted in Table 3 we executed
Cubicle version 1.0.2 and Why3 0.83 (with the backend solvers used previously)
on a laptop with a dual core Intel i7 processor (1.7 GHz) and 8GB of memory.
Szymanski_* is a mutual exclusion protocol given in an atomic (at) and non-
atomic (na) version. Ricart-Argrwala is a distributed timed mutual exclusion
algorithm [26]. These benchmarks also include cache coherence protocols: sev-
eral versions of the academic protocol German and two industrial size problems:
FLASH [18] and an even larger hierarchical protocol Hirr_PV [20]. The numbers
given in the column ∀-clauses correspond to the number of quantified formulas
composing the certificate φ. The size is for the resulting Why3 file. We say for
each certificate if it has been verified and the shortest amount of time to carry
the entire proof by one prover. The column Level denotes the minimum num-
ber of solvers that were able to independently discharge each proof obligation.
It morally depicts the level of confidence we get with this certificate.

We can see that the certificates for academic problems can be verified in just
a couple seconds but larger certificates are out of reach of all solvers, mostly due
to their size.



Table 3. Result for the verification of certificates generated with BRAB

Benchmark ∀-clauses Size Verified Level Time

Szymanski_at 31 18 kB Yes 3 0.96s
Szymanski_na 38 28 kB Yes 2 1.45s
Ricart_Agrawala 30 39 kB Yes 2 1.26s
German_Baukus 48 44 kB Yes 2 1.58s
German.CTC 69 83 kB Yes 2 2.73s
German_pfs 51 50 kB Yes 3 1.79s
Flash_nodata 41 123 kB Yes 2 2.99s
Flash 733 650 kB No 0 -
Hirr_PV_nodata 2704 1.9 MB No 0 -
Hirr_PV 2815 1.9 MB No 0 -

5.2 Intermediate Lemmas

While certificates can be simplified, they can also be enriched to ease the tasks of
the automated solvers. The hardest part for these solvers to handle preservation
proof obligations is to find good instances of the quantified formulas that appear
in their context. If we take a look at the PO (4.) of preservation in the previous
table 2, it takes the form φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ τ |= φ′

4. With a closer inspection
we can remark that we already have φ4 ∧ τ |= φ′

4 which directly implies the PO
we want to prove. We call these pieces of additional information intermediate
lemmas and show in the following how to enrich our certificates with them.

The information we need to infer these lemmas is actually already computed
by Cubicle during fixpoint checks. Every time a cube ϕ0 is added to V, its pre-
image Preτ (ϕ0) is added to Q. When part of this pre-image passes the fixpoint
check, we can retrieve the necessary information of which elements of V were
really useful. This can be done by asking for the unsat core6 of this particular
SMT check. The union of the unsat cores, for the fixpoints of all Preτ (ϕ0),
makes up the part of V that is sufficient to prove the preservation of ¬ϕ0 by τ .

Some extra bookkeeping can be added to the reachability loop to gather
this information during runtime. However it can also be reconstructed after the
fact simply with V. This has two advantages. First, it allows to keep the model
checking phase and the certification phase separated and independent. Second,
computing the reasons for the inductiveness of V once V is complete yields
possibly smaller and simpler intermediate lemmas.

We denote by UC a function that returns the unsat core for a satisfiability
check in the form of a set of formulas7. Our algorithm to extract intermediate
lemmas is given by Algorithm 2. It uses the fact that at the end of the search V
is closed under pre-image as shown in Figure 5. For each node ϕ of V uc is the

6 The quality of the unsat core depends on the solver we use, but our goal here is only
to trim the context. Because only a small portion of the context is necessary for the
proof, most solvers will reflect this in their unsat cores.

7 If the check is satisfiable then UC fails, though in our case, if the certificate is correct
this should never happen. This amounts to a pre-verification of inductiveness of the
certificate by Cubicle itself.



subset of V that makes the pre-image of ϕ be in V. Now, going the other way
around, if we start in a state of the conjunction Γ , then we necessarily end up
in ϕ after one step of τ . This is what is stated by the lemma added to L line 6.

When the intermediate lemmas are assumed by the solvers, the proof of
preservation is trivial by a simple propositional reasoning. The burden of ver-
ification is shifted to the proof of these intermediate lemmas instead but they
are much smaller than the original POs arising from the proof of preservation.
For instance, the largest premise of a lemma for the protocol FLASH (see sec-
tion 5.2) is composed of 41 quantified formulas while the majority has less than
20 (instead of 742 originally). Because the lemmas extraction shown in algo-
rithm 2 is only a series of fixpoint checks, the time spent for the construction of
the certificate is always strictly less that the time spent for the model checking
phase. This overhead is in our sense acceptable.

Algorithm 2. Intermediate lemmas extraction

Input: V: visited cubes
Variables: L : a set of intermediate lemmas

1 L := ∅;
2 foreach ϕ ∈ V do

3 let uc = UC(Preτ (ϕ) |= V) \ Preτ (ϕ) in

4 (* uc is a subset of V *)

5 let Γ =
∧

ψ∈uc ψ in

6 L := “Γ ∧ τ |= ϕ′” ∪ L;

7 return L

ϕ

ψ1

ψ2

ψ3

V

Preτ

Preτ

Preτ

Fig. 5. Finding interme-
diate lemmas

Table 4. Result for the verification of certificates with intermediate lemmas

Benchmark MC. Gen. ∀-clauses Size Verified Level Time

Szymanski_at 0.04s 0.01s 31 21 kB Yes 3 0.66s
Szymanski_na 0.06s 0.03s 38 30 kB Yes 2 1.79s
Ricart_Agrawala 0.05s 0.02s 16 36 kB Yes 2 0.52s
German_Baukus 0.10s 0.03s 48 40 kB Yes 3 1.16s
German.CTC 0.14s 0.07s 69 62 kB Yes 4 1.98s
s German_pfs 0.11s 0.04s 48 43 kB Yes 3 1.42s
Flash_nodata 0.11s 0.09s 41 133 kB Yes 3 2.68s
Flash 1m09s 35.8s 733 1.1 MB Yes 1 4m7s
Hirr_PV_nodata 4m51s 1m13s 2704 3.4 MB Yes 1 42m
Hirr_PV 4m54s 1m25s 2815 3.5 MB Yes 1 53m

Experiments. We give experimental results in Table 4 for certificates enriched
with intermediate lemmas. The Cubicle systems and corresponding Why3 cer-
tificates are available at http://cubicle.lri.fr/certificates. We use the same set of
benchmarks as in the previous section. The column MC. gives the time spent
by Cubicle for model checking the problem, whereas the column Gen. gives

http://cubicle.lri.fr/certificates


the time that was necessary to generate the certificate (essentially compute the
intermediate lemmas). We can see that it is always faster to generate the cer-
tificate than to do the model checking phase. The number of clauses does not
change compared to Table 3 but the files are now larger because they include all
the extra intermediate lemmas. We can see that it is far more advantageous to
pay the price for including these hints in the certificate. Some of the certificates
for easier (academic) protocols are now entirely proven by more solvers inde-
pendently and in a shorter time. Notably, we are now able to verify (albeit only
with confidence level 1) the certificates for industrial size protocols FLASH and
Hirr_PV. They are significantly larger – a few megabytes instead of kilobytes –
and only one SMT solver (Z3) was able to completely discharge all POs. Only
a few subgoals are problematic for other solvers, likely due to some inappropri-
ate heuristic for quantifiers instantiation. For instance, 718 of the 736 POs for
FLASH were proven by at least two solvers. We would still like to increase the
level of confidence brought by the certificates for these large problems.

Exposing Bugs in Cubicle. Cubicle has itself directly benefited from the gen-
eration of certificates. During our experiments on our various benchmarks, we
were at first not able to verify the certificates for Hirr_PV_nodata and Hirr_PV

but only a few (approximately a dozen) of obligations for the intermediate lem-
mas failed to prove. This allowed us to uncover a bug of Cubicle that was present
in its optimized ad-hoc instantiation mechanism. Some substitutions were ill-
formed in the computation of relevant permutations which would cause the fix-
point check (line 8 of Algorithm 1) to answer incorrectly in some specific cases
when multiply nested if-then-else constructs were present in the original system.
The Hirr_PV benchmarks are some of the only ones that triggered this bug which
had escaped our testing process so far.

6 Related work

Two different lines of work coexist for the certification of verification tools. One
approach focuses on verifying the program correct once and for all. In this cate-
gory, there exists several different approaches for proving a program correct. For
some programming languages, it is possible to prove the code directly (e.g. us-
ing ESC Java, Frama-C, VCC, F⋆ etc.), though this is a very tough job because
such programs are often very complex, the proofs rapidly become convoluted
and are unlikely to be automated. One advantage is that the performances of
such programs can be close to the ones of their non certified counterparts. One
example of this kind of certification effort is the modern SAT solver versat

which was developed and verified using the programming language Guru [22].
We are however not aware of similar results for model checkers.

Another possibility is to prove the algorithm correct in a descriptive lan-
guage adapted to verification (e.g. interactive proof assistants like Coq, PVS or
Isabelle) and obtain an executable program through a refinement process or a
code extraction mechanism. In the recent years, certified software of this cate-
gory have gained interest. Worth mentioning is the C compiler CompCert [19]



or the operating system micro-kernel seL4 [16]. CompCert is written entirely in
Coq and uses external oracles in some of the compilation passes. These oracles
provide solutions (e.g. a coloring of a graph) that can be verified by a certified
checker. Our oracles, on the other hand, do not even need to provide correct
results because they only suggest potential invariants.

Although the first formal verification of a model checker in Coq for the modal
µ-calculus [28] goes back to 1998, only recently have certified verification tools
started to emerge. Blazy et al. have verified a static analyzer for C programs [4]
to be used inside CompCert. Although this static analyzer is not on par with the
performances of commercial tools, it is sufficient to enable safely some of the opti-
mizations of a compiler. The most relevant works concerning model checking are
probably [1] and [12]. Amjad [1] shows how to embed BDD based symbolic model
checking algorithms in the HOL theorem prover so that results are returned as
theorems. This approach relies on the correctness of the backend BDD package.
Esparza et al. [12] have fully verified a version of the Spin model checker with
the Isabelle theorem prover. Using successive refinements, they built a correct
by construction model checker from high level specifications down to functional
(SML) code.

Usually in these approaches, a trade-off exists between an efficient program
from a precise algorithm working on complex data structures, and a less con-
crete program from an algorithm where some data structures and operations are
abstracted.

The other approach consists in relying on tools that produce traces or cer-
tificates to be checked afterwards. This is the approach which is adopted in our
work. An approach for the certification of SAT and SMT solvers is the work by
Keller et al. [2] whose idea consists in having the solver produce a detailed cer-
tificate in which each rule is read and verified by the composition of several small
certified (in Coq) checkers. CVC4 is also able to produce full proof trees in a
variant of the Edinburgh Logical Framework extended with side conditions [29].

One recent of such application to model checking is Slab [10] which produces
certificates in the form of inductive verification diagrams to be checked by SMT
solvers.

7 Conclusion

We have presented a technique for certifying the parameterized model checker
Cubicle. We showed how to extract certificates from runs of backward reacha-
bility analysis in the form of inductive invariants. This approach is minimally
intrusive and works with most optimizations. It even directly benefits from the
algorithm BRAB to reduce the size and complexity of these certificates. The
aim of this work was to bring a higher level of confidence in the results of a
parameterized model checker such as Cubicle. We think this is a success because
we were able to automatically verify large certificates for industrial size cache
coherence protocols. This progress was made possible essentially by computing
intermediate lemmas to help and guide the automated theorem provers.



So far our certification framework demands that we trust three of its com-
ponents:

1. Our translation of Cubicle’s systems in Why3’s first order logic. An imme-
diate next step for our work would be to unify these two input specification
languages.

2. The logic part of the deductive platform Why3. We don’t use any advanced
programming features of Why3 so this reduces our trust base. A possibility
would be to use a certified version of Why3 [15].

3. The automated theorem provers. It would not be unreasonable to place our
trust in e.g. one of the SMT solvers, but our technique makes use of redun-
dancy by using multiple solvers. This allows to not trust any single prover.

To further this effort, an interesting approach would be to remove all quanti-
fiers from the certificates. This is feasible because the unsat cores of Algorithm 2
can be easily refined to include useful instances. It would allow to use solvers
that do not support quantifiers and reduce the burden on the ones who do.
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