
A Collaborative Framework for Non-Linear Integer
Arithmetic Reasoning in Alt-Ergo

Sylvain Conchon∗ Mohamed Iguernelala∗,∗∗ Alain Mebsout∗
∗LRI, Université Paris-Sud, Orsay F-91405
∗∗OCamlPro SAS, Gif-sur-Yvette F-91190

Abstract—In this paper, we describe a collaborative framework
for reasoning modulo simple properties of non-linear integer
arithmetic. This framework relies on the AC(X) combination
method and on interval calculus. The first component is used
to handle equalities of linear integer arithmetic and associativity
and commutativity properties of non-linear multiplication. The
interval calculus component is used — in addition to standard lin-
ear operations over inequalities — to refine bounds of non-linear
terms and to inform the SAT solver about judicious case-splits
on bounded intervals. The framework has been implemented in
the Alt-Ergo theorem prover. We show its effectiveness on a set
of formulas generated from deductive program verification.

I. INTRODUCTION

Verification conditions that are produced by tools such as
Boogie [3], Frama-C [7], Why3 [9], or SPARK Hi-Lite [26]
sometimes contain formulas involving non-linear integer arith-
metic. Non-linear operators (e.g. multiplication, Euclidean
division, modulo) are usually generated from loop invariants
or program specifications. For example, the verification of the
following annotated C program computing the integer square
root with the Newton method generates a proof obligation:

∀n, p, r ∈ Z. n > 0 ∧ p = n ∧ r =
n+ 1

2
=⇒ r =

p+ n
p

2

/*@ requires n > 0;
ensures \result * \result <= n;

*/
int isqrt (int n) {
int p = n;
int r = (n + 1) / 2;
/*@ loop invariant

r > 0 && r = (p + n / p) / 2 */
while (r != p) {

p = r;
r = (r + n / r) / 2;

}
return p;

}

While simple from a mathematical point of view, this is
enough to block SMT solvers that are used as back-ends in
these program verification frameworks. For instance, state-of-
the art SMT solvers such as Z3 [17], CVC3 [6], CVC4 [4]
and Yices [18] fail to prove the entirety of proof obligations
from the previous example.

The particularity of these formulas is that they refer to
unbounded mathematical integers and contain a combination

of symbols from several theories (uninterpreted function sym-
bols, arrays, records, enumerations, etc). Additionally, they are
drowned among a context with hundreds of axioms describing
values and operations of the programming language in first-
order logic (data type representations, memory model, pointer
arithmetic, etc).

Non-linear arithmetic over the reals (NRA) was shown
to be decidable by Tarski [37]. Among the numerous deci-
sion procedures for NRA, cylindrical algebraic decomposition
(CAD) [12] and Gröbner bases [27] are examples of com-
plete methods. There also exist incomplete methods based on
interval constraint propagation (ICP) [20], [38] and virtual
substitutions (VS) [39] that are much more efficient in practice.
These methods are implemented in different dedicated solvers
like QEPCAD [11] and RAHD [34] or in general purpose
SMT solvers like Z3 [17] which uses a combination of ICP
and VS. NRA is still an active field of research in the SMT
community [25].

Gödel showed that non-linear arithmetic over integers (NIA)
is an undecidable problem [22]. While there exists a large
panel of work on NRA, only very few incomplete methods
exist for NIA. The most wildly used methods rely on a form
of linearization or booleanization for bounded integers. Some
approaches are based on bit-blasting [1], [35] which destroys
high-level arithmetic constructs and are only applicable for
integer variables living in limited ranges. Other techniques use
encodings to SMT(BV) (bit-vectors) [2] or to SMT(LIA) [10],
[21] with lazy bounding and refinements. These methods only
handle bounded integers and work by exhibiting models in
satisfiable instances but are not very well suited to prove
unsatisfiability. An other related field of research concerns dio-
phantine (in)equations, a restricted form of non-linear integer
constraints [36]. While this problem has also been shown to be
undecidable [32], there exist some complete algorithms when
the degree of polynomials is bounded [15].

Following the remark that only a handful of simple non-
linear arithmetic constraints arise in program verification, we
propose a method that is incomplete but pragmatic. In reality,
most of these proof obligations could be discharged by a
small and adequate set of axioms for NIA (associativity,
commutativity of non-linear multiplication, distributivity, etc).
However, when added to an already large context, such axioms
overwhelm SMT solvers and render their use impractical. Our
approach aims at making efficient use of these NIA axioms
by a built-in treatment in the solver core. Our contributions
are as follows:

• An algorithm for non-linear integer arithmetic reasoning
(illustrated in Section II); this algorithm relies on the
extension and collaboration of the AC(X) framework [13]
and interval calculus [8] to handle NIA axioms in a built-
in way. AC(X) is instantiated with linear integer arith-
metic (LIA) to handle equalities of LIA and associativity
and commutativity properties of non linear multiplication.
The interval calculus component is used — in addition
to standard linear operations over inequalities — to
propagate bounds of non-linear terms and to inform the
SAT solver about judicious case-splits on finite domains.

• A formalization of this algorithm with a precise descrip-
tion of the cooperation mechanisms in Section III.

• An implementation of this cooperative framework in the
SMT solver Alt-Ergo. This implementation uses ground
AC-completion and an efficient simplex-based algorithm
for LIA interval inference.

• A set of benchmarks generated by program verification
tools, to show that our method is competitive.

II. A COLLABORATIVE FRAMEWORK

This section illustrates our collaborative algorithm on the
following conjunction of literals, represented as a set for
convenience.

v ∗ t = 3, v ∗ w = 5,

−(y ∗ y ∗ y) + 3 · w − 5 · t ≤ −10,

0 ≤ x ≤ 5, 2 · z ∗ (x/y) + 3 · x = 4,

3 · (x/y) ∗ x ≤ 0

This formula is typical of the kind we want to check for

satisfiability. The symbol ∗ denotes non-linear multiplication,
the operator · represents linear multiplication (i.e. repeated
addition) and the symbol / is the Euclidean division. In this
example v, w, x, y, z and t are uninterpreted integer constants.

To handle such a formula, our method mainly relies on the
collaboration of three components. Figure 1 shows the simpli-
fied architecture of this arithmetic framework in Alt-Ergo.

SAT solver

AC completion bounds inference

linear equalities FM-Simplex

AC(LIA) framework Interval calculus

s = t s ≤ t

Figure 1: Simplified overview of Alt-Ergo’s arithmetic reason-
ing framework

The first component – on the left hand-side of the figure
– is a completion-like algorithm AC(LIA) to reason mod-
ulo associativity and commutativity properties of non-linear
multiplication, as well as its distributivity over addition. The
AC(LIA) framework consists of a modular extension of ground
AC completion with a decision procedure that reasons modulo
equalities of linear integer arithmetic. This component builds
and maintains a convergent term rewriting system modulo
equalities of LIA and the AC properties of the ∗ symbol.

The second component – on the right of the figure – is
an interval calculus algorithm used to compute bounds of
(non-linear) terms. First, the initial NIA problem is relaxed
to LIA by abstracting non-linear sub-terms and a simplex-
based algorithm (FM-Simplex) is used to infer bounds on
the abstracted linear problem. Second, axioms of NIA are
internally applied by intervals propagation.

The third module is a SAT solver that dispatches equalities
to AC(LIA) and inequalities to interval calculus. The SAT also
performs case-split analysis over finite domains (i.e. bounded
intervals) computed by interval calculus.

The proof of unsatisfiability of the example is carried out
as follows in our collaborative framework:
• using the AC properties of the * symbol and a straightfor-

ward critical pairs computation, the AC(LIA) procedure
deduces that 3 ∗ w = 5 ∗ t follows from the first and the
second equalities. Since 3 ∗w and 5 ∗ t are linear terms,
the equality simplifies to 3 · w = 5 · t;

• using the deduction above, the third equality simplifies to
−(y ∗ y ∗ y) ≤ −10. Then, the interval calculus deduces
that y ≥ 3;

• now, using y ≥ 3 and 0 ≤ x ≤ 5, the interval calculus
component refines the bounds of x/y to the integer
interval [0; 1]. At this point, we have to perform a case-
split analysis to conclude;

• if x/y = 0, the term z ∗ (x/y) becomes linear and
simplifies to 0. Thus, the fifth hypothesis normalizes to
3 · x = 4. The linear integer arithmetic solver, provided
by LIA, says that the equality has no solution in Z;

• when x/y = 1, the last hypothesis becomes 3 · x ≥ 0.
Together with the fourth assumption, this implies x = 0.
However, the interval calculus component deduces that
this equality contradicts the last case-split x/y = 1.

III. FORMAL DESCRIPTION

In this section, we formally define the collaborative frame-
work described in Figure 1. We start by the SAT solver
module, which is a standard CDCL solver modulo theory [33],
and show how it integrates the cooperation of the AC(LIA) and
interval calculus modules.

A. SAT Module

We assume the usual syntactic and semantic notions of
first-order logic. In particular, we denote by M |= F the
logical entailment relation between formulas. For convenience,
conjunctions are represented by sets of formulas. We also
assume a background theory T .

When Mode = search:

SUCCESS
M |= F

return SAT
DECIDE

l is undefined in M l (or ¬l) ∈ F
M := l :: M

PROPAGATE
C ∨ l ∈ F M |= ¬C l undef in M

M := lC∨l :: M
MODEL-BASED CASE-SPLIT

{l} ∪M is T -sat
M := l :: M

T -PROPAGATE
{l1, . . . , ln,¬l} is T -unsat {l1, . . . , ln} ⊆M l undef in M

M := l¬l1∨...¬ln∨l :: M

CONFLICT
C ∈ F M |= ¬C

R := C; Mode := resolution
T -CONFLICT

{l1, . . . , ln} ⊆M {l1, . . . , ln} is T -unsat
R := ¬l1 ∨ . . .¬ln; Mode := resolution

When Mode = resolution:

FAIL
R is the empty clause

return UNSAT
RESOLVE

R = C ∨ ¬l lD∨l ∈M
R := C ∨D

BACKJUMP
R = C ∨ l M = M1 :: l′ :: M2 M2 |= ¬C l is undefined in M2

M := lC∨l :: M2; Mode := search

Figure 2: CDCL solver modulo theory

The state of our SAT module is defined by four global
variables M , F , R and Mode where
• F is a set of clauses
• M is a partial model, represented by a stack of literals;

we use the notation M1 :: M2 for the concatenation of
stacks M1 and M2 (for convenience, l :: M denotes a
stack with l at its top);

• R is a conflict clause
• Mode is variable equal to search or resolution
Literals in M are of two forms: we distinguish between

decision literals l, and implied literals lC annotated with an
explanation clause C. When convenient, we treat M as a set of
literals (in that case, we ignore subscripts of implied literals).

The SAT algorithm is abstractly defined by the non-
deterministic state transition system in Figure 2. Following
[30], each transition rule is given in a guard/action form.
Actions of a rule are enabled only when its guards hold.
We distinguish between two kinds of actions: state variable
assignments, and return statements.

Following standard CDCL solvers, our SAT engine has
two distinct behaviors: a search mode (Mode = search) and
a resolution mode (Mode = resolution). For the sake of
simplicity, we split the set of rules according to the content of
variable Mode.

When Mode = search. The SAT solver terminates by return-
ing SAT if M is a model for F (rule SUCCESS). Rule DECIDE
makes a new decision and push the new decision literal l on
top of M . Boolean constraint propagation is done by rule
PROPAGATE. Rule MODEL-BASED CASE-SPLIT implements
a case split similar to the model-based combination described
in [16]. It allows a new decision literal l to be added on
top of M when there exists a model M for the theory T
coherent with the literals in M . Similarly to PROPAGATE, rule

T-PROPAGATE performs constraint propagation at the theory
level. Rule CONFLICT detects a conflict at the boolean level,
assigns variable R with the conflict clause C and switches to
the resolution mode. Similarly, T-CONFLICT detects a conflict
at the theory level.

When Mode = resolution. The SAT solver terminates by
returning UNSAT if R contains the empty clause ⊥ (rule
FAIL). Rule RESOLVE performs a resolution step between the
clause in R and the explanation clause of an implied literal
in M . Finally, rule BACKJUMP performs non-chronological
backtracking and switches back to the search mode.

Note that only three rules, MODEL-BASED CASE-SPLIT,
T-PROPAGATE and T-CONFLICT, have an interaction with the
theory modules. We describe in the next two sections how
the literals in M are handled by the interval calculus and the
AC(LIA) modules, and postpone to Section IV the concrete
implementation of model-based case-splits.

Configurations of the theory modules are of the form
〈 M | I | R 〉 where
• M is a set of equations, inequations and disequations

between terms in normal form with respect to LIA;
• I is a map from arithmetic terms (affine forms Σiλiti)

to disjoint unions of intervals;
• R is a rewriting system, i.e. a set of oriented equalities

For deciding if a set of literals M is T -satisfiable, we run
the theory modules starting from the initial configuration
〈 M | ∅ | ∅ 〉.

B. AC(LIA) Module

We describe the AC(LIA) module by the set of inference
rules of in Figure 3. These rules can be applied in any order.
This module assumes given a canonizer and a solver for LIA.

DBOTTOM
〈 M ∪ { s 6= s } | I | R 〉

return UNSAT
BOTTOM

〈 M ∪ { s = t } | I | R 〉
return UNSAT

solve(s, t) = ⊥

ORIENT
〈 M ∪ { s = t } | I | R 〉
〈 M | I | R ∪ solve(s, t) 〉

solve(s, t) 6= ⊥ SIMPLIFY
〈 M ∪ { s ./ t } | I | R 〉
〈 M ∪ { s′ ./ t } | I | R 〉

s R s′

COMPOSE
〈 M | I | R ∪ { l→ r } 〉
〈 M | I | R ∪ { l→ r′ } 〉

r R r′

COLLAPSE
〈 M | I | R ∪ { g → d, l→ r } 〉
〈 M ∪ { l′ = r } | I | R ∪ { g → d } 〉

{
l g→d l′

g ≺ l ∨ (g ' l ∧ d ≺ r)

DEDUCE
〈 M | I | R 〉

〈 M ∪ headCP(R) | I | R 〉

Figure 3: Inference rules for AC(LIA)

Its canonizer is a function canLIA that computes a unique
normal form for every term such that s =LIA t iff canLIA(s) =
canLIA(t). A solver for LIA is a function solveLIA that, given
an equation s = t, where s and t are LIA terms, either returns
a special value ⊥ when s = t is inconsistent modulo LIA, or
an equivalent substitution.

Our AC(LIA) algorithm is based on the integration of
canLIA and solveLIA in ground AC-completion.

In order to deal with NIA terms, and in particular to cope
with the AC properties of the non-linear multiplication symbol,
we adapt the LIA canonizer to go through non-linear symbols.
Following the technique described in [29], we define a global
canonizer can by combining canLIA with the canonizer for
AC defined in [24] and formally proved in [14]. For instance,
can((2 · (x ∗ y) + (y ∗ x))/x) gives the term (3 · (x ∗ y))/x.

Using the same technique, we define a wrapper solve to
handle NIA equations by interpreting non-linear terms as black
boxes. See [29] for a more thorough definition of canonizers
and solvers, and [13] for specific requirements in this setting.

In order to integrate can in ground AC completion, we adapt
the notion of ground AC-rewriting to cope with canonizers.
From rewriting point of view, a canonizer behaves like a
convergent rewriting system: it gives an effective way of
computing normal forms. Thus, a natural way for integrating
can in ground AC-completion is to extend normalized rewrit-
ing [31] by replacing normalization with canonization.

Canonized rewriting A term s rewrites to a canonical term
t by the rule l→ r, denoted by s l→r t, if and only if s
rewrites to t′ by l→ r modulo AC and can(t′) = t.

In order to ensure termination of AC(LIA), we assume
(following the AC(X) framework [13]) the global canonizer
can and the wrapper solve are compatible with a given total
ground AC-reduction ordering �.

The first rule DBOTTOM returns UNSAT when M contains
trivial inconsistent disequations. Similarly, rule BOTTOM is
used to detect trivial inconsistent equations by calling solve.

Equations are turned into rewriting rules by ORIENT which
adapts the orientation mechanism of ground AC-completion.

Given an equation s = t, ORIENT adds the substitution
returned by solve(s = t) to R. This rule only applies when
solve returns a solution for an equation.

All remaining rules are similar to those of ground AC-
completion, except that we replace the AC-rewriting relation
by our canonized rewriting relation . In SIMPLIFY, the
rewriting system R is used to reduce either side of literals
s ./ t, where ./ stands for =, 6= or ≤. Similarly, COMPOSE
reduces right hand sides of rewriting rules. Given a rule l→ r,
COLLAPSE either reduces l at an inner position, or replaces l
by a term smaller than r. In both cases, the reduction of l to
l′ may influence the orientation of the rule l′ → r which is
added to M as an equation in order to be re-oriented. Finally,
DEDUCE adds equational consequences of rewriting rules to
M . For instance, if R contains two rules of the form a∗b→ s
and a ∗ c→ t, then the term a ∗ (b ∗ c) can either be reduced
modulo AC to s∗c or to the term t∗b. The equation s∗c = t∗b,
called critical pair, is thus necessary for ensuring convergence
of R. Critical pairs of a set of rewriting rules are computed
by the following function (where aµ stands for the maximal
term (w.r.t. size) enjoying the assertion):

headCP(R) =

b ∗ r′ = b′ ∗ r

∣∣∣∣∣∣
l→ r ∈ R, l′ → r′ ∈ R
∃ aµ. l =

AC
aµ ∗ b

∧ l′ =
AC

aµ ∗ b′

C. Interval Calculus Module

Notations. We write Ja; bK for the integer interval bounded by
a, b ∈ Z. We also write] − ∞; aK for {x ∈ Z | x ≤ a}
and Ja; +∞[for {x ∈ Z | x ≥ a}. We use a simple bracket
notation 〈.〉 in place of J.K,].K, J.[or].[. Interval multiplication
by k ∈ Z is k · 〈a; b〉 = 〈min(k · a, k · b);max(k · a, k · b)〉.
Interval translation by k ∈ Z is 〈a; b〉+ k = 〈a+ k; b+ k〉.

Our inference calculus is described by the set of inference
rules in Figure 4.

The first rule INCONSISTENT-BOUNDS returns UNSAT if
the map I contains a binding t 7→ 〈c1; c2〉 where the interval
〈c1; c2〉 is reduced to the empty set. Rule IMPLIED-EQUALITY
re-injects bindings of the form t 7→ Jc ; cK as equalities t = c

INCONSISTENT-BOUNDS
〈 M | I ∪ {t→ 〈c1; c2〉 ∪D} | R 〉

⊥
c1 > c2

IMPLIED-EQUALITY
〈 M | I ∪ {t→ Jc; cK} | R 〉
〈 {t = c} ∪M | I | R 〉

t 6 ∗
R
c and (t = c) 6∈M

LIA-BOUNDS
〈 M | I | R 〉

〈 M | Fm-Simplex(M) ∪ I | R 〉
Fm-Simplex(M) ∪ I 6= I

NIA-SATURATION
〈 M | I | R 〉

〈 M | apply_nia(I) | R 〉
NORMALIZE

〈 M | I | R 〉
〈 M | norm(I,R) | R 〉

norm(I, R) 6= I

Figure 4: Inference rules for the interval calculus

in M for future consideration by AC(LIA). In rule LIA-
BOUNDS, bindings of I are populated by bounds computed
by the Fm-Simplex algorithm (described below). Union of
bindings is defined in a standard way: two bindings t 7→ D
and t 7→ D′ with the same key t are merged into t 7→ D∩D′.
Intervals in I are then refined by applying of a set of non-
linear interval arithmetic axioms by rule NIA-SATURATION
(a non-exhaustive list of these axioms is given below). In
rule NORMALIZE, terms p that are keys of the map I are
normalized so that a · p has the same normal form as p for all
a ∈ Z. At the same time norm normalizes the monomials of p
with respect to the rewriting system R to ensure that intervals
are maintained modulo equality.

The function Fm-Simplex takes as input a set of literals M .
We note Iq =

⋃
i Li ≤ 0 the subset of M that are inequations.

Fm-Simplex returns refined intervals for the initial affine
forms Li of Iq. Non-linear terms of Iq are abstracted as simple
variables and I is initialized with terms and sub-terms of M
(to]−∞; +∞[). To compute these intervals Fm-Simplex uses
an efficient Simplex-based implementation [8]. This algorithm
attempts to compute constant positive linear combinations∑
λiLi (where λi ∈ Q+) that simulates particular projections

of the Fourier-Motzkin [19], [28] algorithm. These combina-
tions are then used to infer bounds as shown in below.

Example Consider the following set of affine forms:

C1 :

{
L1 = 2x+ y, L2 = −2x+ 3y − 5,

L3 = x+ z + 1, L4 = x+ 5y + z,

L5 = −x− 4y + 3, L6 = 3x− 2y + 2

Eliminating z from C1 is immediate since it only appears
positively:

C2 :

{
L1 = 2x+ y, L2 = −2x+ 3y − 5,

L5 = −x− 4y + 3, L6 = 3x− 2y + 2

We eliminate the variable x and compute the set C3 below
using the combinations: L7 = L1 + L2, L8 = L1 + 2L5,
L9 = 2L6 + 3L2, L10 = L6 + 3L5

C3 :
{

L7 = 4y − 5, L8 = −7y + 6,
L9 = 5y − 11, L10 = −14y + 11

Finally, the variable y is in turn eliminated thanks to the
following combinations: L11 = 7L7+4L8, L12 = 7L7+2L10,
L13 = 7L9 + 5L8, L14 = 14L9 + 5L10

The iterative process terminates and returns the set

C4 :

{
L11 = −11, L12 = −13,
L13 = −47 L14 = −99

Moreover, unfolding the equalities yields
−11 = L11 = 7L7 + 4L8 = · · · = 11L1 + 7L2 + 8L5

−13 = L12 = 7L7 + 2L10 = · · · = 7L1 + 7L2 + 6L5 + 2L6

−47 = L13 = 7L9 + 5L8 = · · · = 5L1 + 21L2 + 10L5 + 14L6

−99 = L14 = 14L9 + 5L10 = · · · = 42L2 + 15L5 + 33L6

Using the linear combination 11L1+7L2+8L5 = −11, we
can make the deductions −1 ≤ L1, − 11

7 ≤ L2 and − 11
8 ≤ L3

in the rationals. Furthermore, these deductions are refined as
follows in the integers: −1 ≤ L1,

⌈
− 11

7

⌉
= −1 ≤ L2 and⌈

− 11
8

⌉
= −1 ≤ L3.

More formally, Fm-Simplex tries to compute one particu-
lar constant positive linear combination by solving auxiliary
rational optimization problems of the form:

maximize
∑
i bi λi

subject to
∧
j

∑
i ai,j · λi = 0 ∧∑

i λi > 0 ∧
∧
i λi ≥ 0

where Li =
∑
j ai,j · tj + bi

such that:

• if unsatisfiable, there is no constant positive linear combi-
nation of the original inequalities – in this case no bounds
are inferred so Iq is satisfiable;

• if the optimization problem is unbounded, then Iq is
inconsistent;

• otherwise, there exists a negative maximum and a positive
linear combination from which bounds can be refined (as
shown above).

The function apply_nia saturates the map I with axioms
of non-linear arithmetic over intervals [23]. For non-linear
multiplication, ten axioms are integrated in the solver, shown

below:

∀a, b, c, d ∈ Z ∪ {−∞,+∞}, x ∈ 〈a; b〉, y ∈ 〈c; d〉.

0 ≤ a ≤ b ∧ 0 ≤ c ≤ d =⇒ x ∗ y ∈ 〈a ∗ c; b ∗ d〉
0 ≤ a ≤ b ∧ 0 < c < d =⇒ x ∗ y ∈ 〈b ∗ c; b ∗ d〉
0 ≤ a ≤ b ∧ c ≤ d ≤ 0 =⇒ x ∗ y ∈ 〈b ∗ c; a ∗ d〉
a < 0 < b ∧ 0 ≤ c ≤ d =⇒ x ∗ y ∈ 〈a ∗ d; b ∗ d〉
a < 0 < b ∧ c < 0 < d =⇒

x ∗ y ∈ 〈min(a ∗ d, b ∗ c);max(a ∗ c, b ∗ d)〉
a < 0 < b ∧ c ≤ d ≤ 0 =⇒ x ∗ y ∈ 〈b ∗ c; a ∗ c〉
a ≤ b ≤ 0 ∧ 0 ≤ c ≤ d =⇒ x ∗ y ∈ 〈a ∗ d; b ∗ c〉
a ≤ b ≤ 0 ∧ c < 0 < d =⇒ x ∗ y ∈ 〈a ∗ d; a ∗ c〉
a ≤ b ≤ 0 ∧ c ≤ d ≤ 0 =⇒ x ∗ y ∈ 〈b ∗ d; a ∗ c〉
a = b = 0 ∨ c = d = 0 =⇒ x ∗ y ∈ J0; 0K

Our implementation also handles non-linear Euclidean divi-
sion of polynomials of the form λP (x̄)/P (x̄) with the axiom:

∀a, b ∈ Z ∪ {−∞,+∞}, P (x̄) ∈ 〈a; b〉, λ ∈ Z.
0 6∈ 〈a; b〉 =⇒ λP (x̄)/P (x̄) ∈ Jλ;λK

The more general form P (x̄)/Q(x̄) is handled when
Q(x̄) > 0 or Q(x̄) < 0. For instance, from x ∈ J0; 5K and
y ∈ J3; +∞[we deduce x/y ∈ J0; 1K.

Intervals are also propagated from non-linear terms to
their sub-terms when applicable. For example, what are the
bounds of x, knowing those of xn? Our main concern with
this technique is to guarantee that our interval arithmetic
computes bounds that remain correct by over-approximating
the intervals. This is particularly apropos in the case of the root
of an interval where results may become irrational numbers.

∀a, b ∈ Z ∪ {−∞,+∞}, xn ∈ 〈a; b〉. n is odd =⇒ x ∈ 〈UAZ(n
√
a) ; OAZ(n

√
b)〉

n is even and 0 ≤ a ≤ b =⇒
x ∈ 〈−OAZ(n

√
b) ; OAZ(n

√
b)〉

where

UAZ(n
√
x) = dUAQ(n

√
x)e and OAZ(n

√
x) = bOAQ(n

√
x)c

are accurate (under and over) approximations of n
√
x in Z

computed as follows.
Let AQ(n

√
x) be an accurate approximation in Q of n

√
x and

OAQ(n
√
x) (resp. UAQ(n

√
x)) be an over-approximation (resp.

under-approximation) of n
√
x. We can safely deduce that:

if AQ(n
√
x)n > x then

OAQ(n
√
x) = AQ(n

√
x) and UAQ(n

√
x) = x/AQ(n

√
x)n−1

if AQ(n
√
x)n < x then

UAQ(n
√
x) = AQ(n

√
x) and OAQ(n

√
x) = x/AQ(n

√
x)n−1

if AQ(n
√
x)n = x then OAQ(n

√
x) = UAQ(n

√
x) = AQ(n

√
x)

For example, from −y3 ∈] − ∞;−10K we can deduce that
y ∈ J3; +∞[.

Function norm normalizes keys of the map I with the rewriting
system R. Every binding p 7→ D of I is replaced with a
normalized binding to ensure that identities between terms
differing only from a multiplicative factor will be discovered

and that their intervals will be merged. An affine form p has
to be reduced with the rules of R, i.e. p R p′ + c where
p′ is an affine form Σiai · ti. p′ is then normalized by a
multiplicative factor k = a1

|a1| ·
ppcm(...,ai,...)
pgcd(...,ai,...)

which guarantees
that coefficients k · ai remain integer numbers and that the
sign of p′ is also normalized with respect to its first coefficient.
p 7→ D is replaced by (and merged in I) the equivalent binding
k · p′ 7→ k · (D − c).

Additionally, if norm encounters a key of the form p/q, the
axiom:

∀q, p ∈ Z. ∃ a unique k ∈ Z. q = (q/p) ∗ p+ k ∧ 0 ≤ k ≤ p

is instantiated by adding the following new bindings to I ,
knowing that this unique k only depends on p and q and is
noted p%q:

q − (q/p) ∗ p− (p%q) 7→ J0; 0K
(p%q) 7→ J0; +∞[

(p%q)− q 7→]−∞; 0K

IV. IMPLEMENTATION

We integrated our collaborative framework in the Alt-Ergo
SMT-solver. The architecture of the current implementation
is very close to description of Figure 1. We describe in this
section some implementation details of the rules given in
Section III. In particular, we explain how the premises of
rules MODEL-BASED CASE-SPLIT, T -PROPAGATE and T -
CONFLICT (in Figure 2) are implemented. Furthermore, we
give our deterministic strategy for applying rules of Figures 3
and 4.

An important feature from an implementation view point,
is that our theory modules should be incremental and back-
trackable. Indeed, the SAT module constructs its partial model
M in an incremental way, and context of successive calls to
theory modules only differ in just a few literals. Additionally,
when the SAT backjumps, theories must recover their previous
states. In Alt-Ergo, theories modules are implemented with
persistent data structures (sets, maps, etc.) thus backtrackabil-
ity is obtained for free.

For now, all components are incremental and backtrackable
except for Fm-Simplex. Each call to Fm-Simplex processes
the literals of M from scratch. To circumvent this issue, we
employ memoization techniques to reuse previously computed
results at the expense of a larger memory footprint.

Concerning the implementation of rule MODEL-BASED
CASE-SPLIT, the difficulty is to discover the case-split literal
l. Alt-Ergo finds such a literal by looking for a binding
t 7→ Jc1; c2K in I such that c2 − c1 ≥ 1. In this case, the
case-split literal is t = c1 . As a heuristic, priority is given to
bindings with the smallest intervals.

In the rule T -CONFLICT, the difficulty is to find the sub-
set {l1, . . . , ln} of M that is T -unsatisfiable. For that, we
have implemented an explanation mechanism that consists in
remembering the set of literals that were involved in each
deduction step (bound inference, adding a rewriting rule, etc.)
of the theory modules. Note that a special attention should be

given to the implementation of this explanation mechanism;
if literals are missing from {l1, . . . , ln}, the SAT solver may
backjump to the wrong decision level.

The additional difficulty of T -PROPAGATE is to find the
implied literal l. We restrict the possible literals to the ones
(or their negation) that appear in F . The key point of the
implementation is that each time the SAT solver assumes a
new literal, we rapidly identify all literals impacted by this
addition. This is implemented thanks to an indirection table
that dispatches literals according to their sub-terms. We extract
all implied literals from the set returned by a look-up in this
table.

We used the following strategy to process an equation using
the inference rules of AC(LIA):

SIMPLIFY∗

(BOTTOM | (ORIENT (COMPOSE COLLAPSE DEDUCE)∗))

This means that the equation is first simplified as much as
possible. Then, if it is not proven to be trivially unsolvable, it
is solved. Each resulting rule is added to the rewriting system
and then used to “compose” and “collapse” the other rules of
R. Finally, critical pairs are computed and added to M .

Solving an equation can also have an impact in the interval
calculus module. In this case, the following strategy is used
to normalize the map I with respect to R and to call bounds
inference rules.

NORMALIZE LIA-BOUNDS NIA-SATURATION

Similarly, processing an inequality is done as follows:

SIMPLIFY∗ LIA-BOUNDS NIA-SATURATION

Notice that, INCONSISTENT-BOUNDS (resp. IMPLIED-
EQUALITY) is applied as soon as an interval becomes
inconsistent (resp. reduces to a point).

V. EXPERIMENTAL RESULTS

In this section, we evaluate our collaborative framework on
a collection of verification conditions issued from program
verification. The aims of our evaluation is to show that:
• although incomplete, our approach allows us to prove

formulas requiring a simple non-linear integer arithmetic
reasoning;

• our extension does not slow down the Alt-Ergo SMT-
solver when non-linear integer arithmetic reasoning is not
needed.

For the experiments, we have used the current svn revision
of Alt-Ergo and a modified version of it where non-linear
integer arithmetic is deactivated. We also used the latest
versions of some state-of-the-art SMT solvers including CVC3
(version 2.4.1), CVC4 (version 1.2) and Z3 (version 4.3.1).
Our test suite is composed of three benchmarks which already
contain some auxiliary NIA axioms to help provers that don’t
support built-in NIA reasoning:
• the first one is made of 3431 formulas generated from

the SPARK Hi-Lite toolset1. These verification conditions
were only available in Alt-Ergo’s native input language;

1Available on http://libre.adacore.com/tools/spark-gpl-edition/

• the second one contains 80 difficult verification condi-
tions generated from the gallery of programs of Why,
version 2. Formulas in this benchmark were only avail-
able in Alt-Ergo’s native input language;

• the third benchmark is composed of 1920 verification
conditions issued from Why3’s gallery of verified pro-
grams2. These formulas where generated in Alt-Ergo’s
native input language, the SMTLIB-2 language and
CVC3’s native input language.

All measures were obtained on a 64-bit machine with a
quad-core Intel Xeon processor at 3.2 GHz and 24 GB of
memory. Provers were given a time limit of 60 seconds and a
memory limit of 2 GB for each verification condition.

unsat time unk. time

alt-ergo 2285 1017 s 621 5329 s

ae no-nia 2241 1241 s 704 5709 s

Figure 5: Benchmark issued from the SPARK Hi-Lite toolset.

unsat time unk. time

alt-ergo 57 45 s 18 176 s

ae no-nia 34 44 s 40 180 s

Figure 6: Formulas issued from Why’s gallery of programs.

unsat time unk. time

alt-ergo 1842 465 s 19 45 s

ae no-nia 1830 456 s 30 85 s

z3 1528 392 s 1 0.1 s

cvc3 1767 382 s 34 290 s

cvc4 1664 619 s 2 0.1 s

Figure 7: Benchmark issued from Why3’s gallery of programs.

The results of our experiments are reported in Figures 5, 6
and 7. The first column of each table shows the number
of formulas solved by each prover. The second one reports
the corresponding accumulated time. The third and the fourth
columns report the number of formulas for which the provers
returned unknown and the corresponding time, respectively.

From these figures, we remark that Alt-Ergo proves more
formulas when non-linear integer arithmetic is activated.
Moreover, we were surprised to notice on Figure 5 that Alt-
Ergo with NIA is 18% faster than Alt-Ergo without NIA. We
also notice from figures 6 and 7 that the overhead of our non-
linear arithmetic extension is negligible.

These results can be explained because:
• Alt-Ergo has more built-in NIA axioms than what is given

in these benchmarks;

2Available on http://toccata.lri.fr/gallery/why3.en.html

http://libre.adacore.com/tools/spark-gpl-edition/
http://toccata.lri.fr/gallery/why3.en.html

• some of these auxiliary NIA axioms are likely to be ill-
suited for the instantiation mechanism;

• other auxiliary NIA axioms, e.g. associativity and com-
mutativty, will glut the solver with plenty of useless
instances.

In a second step, we tried to evaluate our approach on the
UF-NIA benchmark of SMT-LIB [5]. However, we noticed
that formulas in this benchmark require a non-trivial prepro-
cessing of LET-IN and IF-THEN-ELSE high-level constructs.
Unfortunately, such a capability is not provided by Alt-Ergo
for the moment.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a collaborative approach of
procedures for reasoning in the linear and non-linear fragment
of integer arithmetic. We have implemented this framework
in the Alt-Ergo theorem prover and the first experiments
show that this method is promising. Further improvements
on the combination of interval arithmetic with the rest of
the framework include the incorporation of other NIA axioms
and the extension of the matching algorithm — used when
applying these axioms — modulo AC properties.

REFERENCES

[1] Z. S. Andraus and et al. Automatic abstraction and verification of verilog
models, 2004.

[2] D. Babic and M. Musuvathi. Modular arithmetic decision procedure.
Microsoft Research Redmond, Tech. Rep. TR-2005-114, 2005.

[3] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In
Formal methods for Components and Objects, pages 364–387. Springer,
2006.

[4] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović,
T. King, A. Reynolds, and C. Tinelli. Cvc4. In Proceedings of the
23rd international conference on Computer aided verification, CAV’11,
pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] C. Barrett, A. Stump, C. Tinelli, S. Boehme, D. Cok, D. Deharbe,
B. Dutertre, P. Fontaine, V. Ganesh, A. Griggio, J. Grundy, P. Jackson,
A. Oliveras, S. Krstić, M. Moskal, L. D. Moura, R. Sebastiani, T. D.
Cok, and J. Hoenicke. C.: The smt-lib standard: Version 2.0. Technical
report, 2010.

[6] C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns,
editors, Proceedings of the 19th International Conference on Computer
Aided Verification (CAV ’07), volume 4590 of Lecture Notes in Computer
Science, pages 298–302. Springer-Verlag, July 2007. Berlin, Germany.

[7] P. Baudin, F. Bobot, R. Bonichon, L. Correnson, P. Cuoq, Z. Dargaye,
J.-C. Filliâtre, P. Herrmann, F. Kirchner, M. Lemerre, C. Marché,
B. Monate, Y. Moy, A. Pacalet, V. Prévosto, J. Signoles, and
B. Yakobowski. Frama-c. http://frama-c.com.

[8] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, A. Mahboubi,
A. Mebsout, and G. Melquiond. A simplex-based extension of fourier-
motzkin for solving linear integer arithmetic. In Automated Reasoning,
pages 67–81. Springer, 2012.

[9] F. Bobot, J.-C. Filliâtre, C. Marché, A. Paskevich, et al. Why3: Shepherd
your herd of provers. In Boogie 2011: First International Workshop on
Intermediate Verification Languages, pages 53–64, 2011.

[10] M. Bozzano, R. Bruttomesso, A. Cimatti, A. Franzén, Z. Hanna,
Z. Khasidashvili, A. Palti, and R. Sebastiani. Encoding rtl constructs
for mathsat: a preliminary report. Electron. Notes Theor. Comput. Sci.,
144(2):3–14, Jan. 2006.

[11] C. W. Brown. Qepcad b: A program for computing with semi-algebraic
sets using cads. SIGSAM BULLETIN, 37:97–108, 2003.

[12] G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition: a synopsis. SIGSAM Bull., 10(1):10–12, Feb.
1976.

[13] S. Conchon, E. Contejean, and M. Iguernelala. Canonized rewriting and
ground ac completion modulo shostak theories: Design and implemen-
tation. arXiv preprint arXiv:1207.3262, 2012.

[14] E. Contejean. A certified AC matching algorithm. In V. van Oostrom,
editor, 15th International Conference on Rewriting Techniques and
Applications, volume 3091, pages 70–84, Aachen, Germany, June 2004.

[15] E. Contejean, C. Marché, A. P. Tomás, and X. Urbain. Mechanically
proving termination using polynomial interpretations. Journal of Auto-
mated Reasoning, 34(4):325–363, 2005.

[16] L. M. de Moura and N. Bjørner. Model-based theory combination.
Electr. Notes Theor. Comput. Sci., 198(2):37–49, 2008.

[17] L. M. de Moura and N. Bjørner. Z3: An efficient smt solver. In Tools
and Algorithms for the Construction and Analysis of Systems, 14th
International Conference, TACAS 2008, Budapest, Hungary, volume
4963, pages 337–340. Springer, 2008.

[18] B. Dutertre and L. D. Moura. The yices smt solver. Technical report,
SRI, 2006.

[19] J.-B. J. Fourier. Reported in: Analyse des travaux de l’Académie Royale
des Sciences, pendant l’année 1824, Partie mathématique, Histoire de
l’Académie Royale des Sciences de l’Institut de France. (7), 1827.

[20] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert. Efficient
solving of large non-linear arithmetic constraint systems with complex
boolean structure. Journal on Satisfiability, Boolean Modeling and
Computation, 1:209–236, 2007.

[21] M. K. Ganai. Efficient decision procedure for bounded integer non-linear
operations using smt (\ mathcal {LIA}). In Hardware and Software:
Verification and Testing, pages 68–83. Springer, 2009.

[22] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte für Mathematik und Physik,
38(1):173–198, 1931.

[23] T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic: From
principles to implementation. J. ACM, 48:1038–1068, September 2001.

[24] J.-M. Hullot. Associative commutative pattern matching. In Proc. 6th
IJCAI (Vol. I), Tokyo, pages 406–412, Aug. 1979.

[25] D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic.
In Automated Reasoning - 6th International Joint Conference, IJCAR
2012, Manchester, UK, June 26-29, 2012. Proceedings, volume 7364 of
Lecture Notes in Computer Science, pages 339–354. Springer, 2012.

[26] J. Kanig, E. Schonberg, and C. Dross. Hi-lite: the convergence of
compiler technology and program verification. In B. Brosgol, J. Boleng,
and S. T. Taft, editors, HILT, pages 27–34. ACM, 2012.

[27] D. Kapur. Using gröbner bases to reason about geometry problems. J.
Symb. Comput., 2(4):399–408, 1986.

[28] D. Kroening and O. Strichman. Decision Procedures: An Algorithmic
Point of View. Springer Publishing Company, Incorporated, 1 edition,
2008.

[29] S. Krstić and S. Conchon. Canonization for disjoint unions of theories.
Information and Computation, 199(1-2):87–106, May 2005.

[30] S. Krstic and A. Goel. Architecting solvers for sat modulo theories:
Nelson-oppen with dpll. In Frontiers of Combining Systems, Liverpool,
UK, September 10-12, 2007, Proceedings, volume 4720, pages 1–27.
Springer, 2007.

[31] C. Marché. Normalized rewriting: an alternative to rewriting modulo a
set of equations. 21(3):253–288, 1996.

[32] Y. V. Matiyasevich. Enumerable sets are diophantine. Soviet Mathemat-
ics (Dokladi), 11(2):354–357, 1970.

[33] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and abstract
DPLL modulo theories. In F. Baader and A. Voronkov, editors, Proceed-
ings of the 11th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning (LPAR’04), Montevideo, Uruguay,
volume 3452 of Lecture Notes in Computer Science, pages 36–50.
Springer, 2005.

[34] G. O. Passmore. Combined decision procedures for nonlinear arith-
metics, real and complex. 2011.

[35] S. A. Seshia, S. K. Lahiri, and R. E. Bryant. A hybrid sat-based decision
procedure for separation logic with uninterpreted functions. In In Proc.
DAC’03, pages 425–430, 2003.

[36] N. Smart. The Algorithmic Resolution of Diophantine Equations: A
Computational Cookbook. London Mathematical Society Student Texts.
Cambridge University Press, 1998.

[37] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1948.

[38] A. C. Ward and W. Seering. An approach to computational aids for
mechanical design. In Proceedings of the International Conference on
Engineering Design, 1981.

[39] V. Weispfenning. A New Approach to Quantifier Elimination for Real
Algebra. Fakultät für Mathematik und Informatik: MIP. Fak. für Math.
und Informatik, Univ. Passau, 1993.

http://frama-c.com

